skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tituana, Luis R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Magnetic fields render a unique ability to control magnetic objects without a direct mechanical contact. To exploit this potential for a broad range of medical, microrobotics, and microfluidics applications, noncontact magnetic manipulators have been designed using both electromagnets and permanent magnets. By feedback control of these manipulators, magnetic objects can be precisely driven in the directions required by an application of interest. The feedback design process for these manipulators is normally complicated by their highly nonlinear nature, particularly for those utilizing permanent magnets. Yet, feedback linearization techniques can be applied to compensate for the nonlinear nature of most magnetic manipulators. This goal can be achieved by solving an underdetermined system of nonlinear algebraic equations. This paper adopts a homotopy continuation approach to solve this system of equations. It is shown by simulations that the proposed feedback linearization scheme drastically improves the control performance compared to the alternative control design methods used in prior work. 
    more » « less